Chem. Ber. 110, 2114-2123 (1977)

Schwefelheterocyclen, I

Synthese und Reaktionsverhalten von 2H-1,3-Thiazeten

Klaus Burger*, Ralph Ottlinger und Josef Albanbauer

Organisch-Chemisches Institut der Technischen Universität München, Arcisstr. 21, D-8000 München 2

Eingegangen am 3. September 1976

Durch Umsetzung von Thiocarbonsäureamiden mit Hexafluoraceton in Gegenwart von Trifluoressigsäureanhydrid/Pyridin werden 6H-1,3,5-Oxathiazine 1 gewonnen. Die Thermolyse von 1 liefert 2H-1,3-Thiazete 3, die in einem thermisch mobilen Gleichgewicht mit N-(Perfluorisopropyliden)thiocarbonsäureamiden 2 stehen. Dies eröffnet einfache Synthesewege für 3H-1,2,4-Dithiazole 6, 5-Imino-2-thiazoline 7, 5,6-Dihydro-4H-1,3-thiazine 8-10, 4H-1,3-Thiazine 11 sowie 4H-1,3,5-Thiadiazine 12.

Sulfur Heterocycles, I

Synthesis and Reaction Behaviour of 2H-1,3-Thiazetes

The reaction of thiocarboxamides with hexafluoroacetone in the presence of trifluoroacetic anhydride/pyridine yields 6H-1,3,5-oxathiazines 1. Thermolysis of 1 affords 2H-1,3-thiazetes 3 which are in a thermally mobile equilibrium with N-(perfluoroisopropylidene)thiocarboxamides 2. This opens simple synthetic pathways to 3H-1,2,4-dithiazoles 6, 5-imino-2-thiazolines 7, 5,6-dihydro-4H-1,3-thiazines 8-10, 4H-1,3-thiazines 11 as well as 4H-1,3,5-thiadiazines 12.

2H-1,3-Thiazete wurden unlängst als Zwischenstufe der Photoaddition von Thiocarbonylverbindungen an Nitrile angenommen¹⁾. Dies veranlaßt uns, nachfolgend erstmals über Synthese und Reaktionsverhalten dieses heterocyclischen Systems zu berichten²⁾.

Thiocarbonsäureamide liefern mit zwei Äquivalenten Hexafluoraceton bei $-20-0^{\circ}$ C in etherischer Lösung unter Zusatz von Trifluoressigsäureanhydrid/Pyridin (oder Phosphoryltrichlorid/Pyridin) 2,2,6,6-Tetrakis(trifluormethyl)-6H-1,3,5-oxathiazine 1^{2-4}). IR-(vC=N 1655-1620 cm⁻¹), ¹H-, ¹⁹F-NMR- (Tab. 3) und massenspektrometrische Daten [(M - C₃F₆O)⁺, (M - C₃F₆O, -S)⁺, (M - CF₃, -C₃F₆S)⁺, (CF₃)₂CS⁺, RCN⁺, RCS⁺] stehen im Einklang mit Struktur 1.

Die Verbindungen 1 unterliegen bei höheren Temperaturen (140 °C Bad) und vermindertem Druck einer Retro-Diels-Alder-Reaktion⁵⁾. Unter Cycloeliminierung von Hexafluoraceton entstehen N-(Perfluorisopropyliden)thiocarbonsäureamide 2, die bei Raum-

¹⁾ D. S. L. Blackwell, P. de Mayo und R. Suau, Tetrahedron Lett. 1974, 91.

²⁾ Kurzmitteilung: K. Burger, J. Albanbauer und M. Eggersdorfer, Angew. Chem. 87, 816 (1975); Angew. Chem., Int. Ed. Engl. 14, 766 (1975).

³⁾ C. Giordano und A. Belli, Synthesis 1975, 789.

⁴⁾ Siehe auch A. Schulze und J. Goerdeler, Tetrahedron Lett. 1974, 221; J. Goerdeler, R. Schimpf und M. L. Tiedt, Chem. Ber. 105, 3322 (1972).

⁵⁾ H. Wollweber, Diels-Alder-Reaktion, S. 152ff., und dort zitierte Lit., Georg Thieme Verlag, Stuttgart 1972.

temperatur in Form der valenztautomeren 2H-1,3-Thiazete 3 vorliegen. Die Vierringstruktur geht aus dem massenspektrometrischen Zerfallsmuster $[(M - S)^+, CF_3CS^+,$ RCS⁺, RCN⁺] und der chemischen Verschiebung des Signals im ¹⁹F-NMR-Spektrum (Tab. 3) hervor. Die δ-Werte liegen wie für 3,3-Bis(trifluormethyl)-3H-1,2,4-dithiazole 6 bei ca. -5 ppm; für die offenkettige Form 2 sollte, entsprechend der Plazierung der beiden Trifluormethylgruppen an ein sp²-Kohlenstoffatom, ein den N-(Perfluorisopropyliden)carbonsäureamiden vergleichbarer δ -Wert (-9 bis -10 ppm⁶) erwartet werden. Die Stabilität der 2H-1,3-Thiazete 3 führen wir in erster Linie auf die an das Ringsystem gebundenen Trifluormethylgruppen zurück⁷⁾.

Neben den 2H-1,3-Thiazeten 3 kann unter den angewandten Reaktionsbedingungen in untergeordneter Menge (<10%) jeweils ein zweites Thermolyseprodukt isoliert werden, dem aufgrund der spektroskopischen Daten (Tab. 3) die symmetrische Struktur 4 eines 4,4-Bis(trifluormethyl)-4H-1,3,5-thiadiazins zukommt. Charakteristische Fragment-Ionen des massenspektrometrischen Zerfalls von 4 sind: M^+ , $(M - CF_3)^+$, $(M - RCN)^+$, $(M - RCN, - CF_3)^+$, $(M - RCN, - R)^+$, RCS^+ , RCN^+ . Seine Bildung erklären wir mit einer Diels-Alder-Reaktion des durch eine thermisch ausgelöste Cycloreversion aus 3 hervorgegangenen Nitrils RCN an das mit 3 in einem thermisch mobilen Gleichgewicht stehende 1,3-Heterodien 2. Dieser Befund eröffnet neue einfache Zugänge zu Schwefelheterocyclen^{8,9)}.

In siedendem Xylol in Gegenwart von Isonitrilen gelingt die glatte Überführung von 3, über die Zwischenstufe 2, in 5-Imino-4,4-bis(trifluormethyl)-2-thiazoline 7. Folgende Fragment-Ionen des massenspektrometrischen Zerfalls stützen Struktur 7: M⁺, (M – $R^{2}NCS$)⁺, $(M - R^{2}NCS, -F)^{+}$, $(M - R^{2}NCS, -CF_{3})^{+}$, $R^{1}CS^{+}$, $R^{1}CN^{+}$, $(R^{2})^{+}$. Für die Sauerstoffanalogen von 2 ist die [4+1]-Cycloaddition von Isonitrilen beschrieben ^{10, 11}.

 ⁶⁾ K. Burger und W.-D. Roth, unveröffentlichte Ergebnisse.
 ⁷⁾ Elektronische Stabilisierung gespannter Ringsysteme: ^{7a)} D. M. Lemal und L. H. Dunlap jr., J. Am. Chem. Soc. 94, 6562 (1972). - ^{7b)} W. Adam, J.-C. Liu und O. Rodriguez, J. Org. Chem. 38, 2269 (1973).

⁸⁾ Kurzmitteilung: K. Burger, J. Albanbauer und W. Foag, Angew. Chem. 87, 816 (1975); Angew. Chem., Int. Ed. Engl. 14, 767 (1975).

⁹⁾ Elektrocyclische Reaktionen siehe G. Maier, Valenzisomerisierungen, S. 89ff., und dort zitierte Lit., Verlag Chemie Weinheim 1972.

¹⁰⁾ N. P. Gambaryan, E. M. Rokhlin, Yu. V. Zeifman, L. A. Simonyan und I. L. Knunyants, Dokl. Akad. Nauk SSSR 166, 864 (1966) [C. A. 64, 15861 (1966)].

¹¹⁾ K. Burger und W.-D. Roth, unveröffentlichte Ergebnisse; W.-D. Roth, Dissertation, Techn. Univ. München 1976.

Bringt man 1 mit feingepulvertem Phosphorpentasulfid bei 140 °C zur Reaktion, so entstehen unter Aufnahme eines weiteren Schwefelatoms in den Ring in sehr guten Ausbeuten 3,3-Bis(trifluormethyl)-3*H*-1,2,4-dithiazole 6, die auch durch Umsetzung von *N*-(Perfluorisopropyliden)carbonsäureamiden 5^{12} mit Phosphorpentasulfid zugänglich sind ¹³. Die Isolierung von 2 als Zwischenstufe der Reaktion $5 \rightarrow 6$ gelang, selbst bei einem Unterschuß an Phosphorpentasulfid und niedrigeren Reaktionstemperaturen, nicht. Die Verbindungen 6 sind leicht gelbe bis gelbe Flüssigkeiten von hoher thermischer Stabilität. Charakteristische Fragment-Ionen des massenspektrometrischen Zerfalls der Verbindungsklasse 6 sind: M⁺, (M - S)⁺, (M - S₂)⁺ (100%), (M - CF₃)⁺, (M - S₂, -F)⁺, (M - S₂, $-CF_3$)⁺, CF₃CS⁺, RCS⁺, RCN⁺, R⁺ und CF₃⁺.

Norbornen und elektronenreiche Dienophile wie Enolether und Enamine werden bei 140°C (Bad) von 3 glatt unter Bildung von 4,4-Bis(trifluormethyl)-5,6-dihydro-4*H*-1,3thiazinen 8 – 10 aufgenommen¹⁴⁾. Wie bei der Cycloaddition an N-(Perfluorisopropyliden)carbonsäureamide scheint der Einbau im Falle von bindungsunsymmetrisch substituierten Doppelbindungssystemen richtungsspezifisch zu verlaufen¹⁵⁻¹⁹. Ebenso war die Suche nach dem zweiten Orientierungsisomeren bei der Cycloaddition von 1-Diethylamino-1-

- ¹⁷⁾ K. Burger und W.-D. Roth, unveröffentlichte Ergebnisse.
- ¹⁸⁾ N. P. Gambaryan und Yu. V. Zeifman, Izv. Akad. Nauk SSSR, Ser. Khim. 9, 2059 (1969) [C. A. 72, 12661 r (1970)].

¹²⁾ W. Steglich, K. Burger, M. Dürr und E. Burgis, Chem. Ber. 107, 1488 (1974).

¹³⁾ Kurzmitteilung: K. Burger, J. Albanbauer und W. Strych, Synthesis 1975, 57.

¹⁴⁾ H. Wollweber, Diels-Alder-Reaktion, Georg Thieme Verlag, Stuttgart 1972.

¹⁵⁾ Yu. V. Zeifman, N. P. Gambaryan, L. A. Simonyan, R. B. Minasyan und I. L. Knunyants, Zh. Obshch. Khim. 37, 2476 (1967) [C. A. 69, 2919 (1968)].

¹⁶⁾ K. Burger, W.-D. Roth, K. Einhellig und L. Hatzelmann, Chem. Ber. 108, 2737 (1975), und dort zitierte Lit.

¹⁹⁾ Die bei der Reaktion mit 2-Morpholino-1-cyclohexen in den ¹⁹F-NMR-Spektren der Rohprodukte 10a und b zu <15% nachweisbare zweite Verbindung ist sehr wahrscheinlich ein Stereoisomeres.

propin¹⁶⁾ und einer Reihe von Nitrilen an 2 bisher erfolglos. Es entstehen die 4,4-Bis-(trifluormethyl)-4*H*-1,3-thiazine 11 bzw. 4,4-Bis(trifluormethyl)-4*H*-1,3,5-thiadiazine 12. Die vorgeschlagene Regiochemie wurde den ¹H- und ¹⁹F-NMR-Spektren (Tab. 8) sowie dem massenspektrometrischen Zerfallsmuster der Verbindungen entnommen²⁰⁾.

Die vorliegenden Untersuchungen stützen den von de Mayo et al.¹⁾ für die Photoaddition von Thiocarbonylverbindungen an Nitrile postulierten Reaktionsverlauf über 2H-1,3-Thiazete.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für finanzielle Unterstützung dieser Arbeit. J. A. ist dem Fonds der Chemischen Industrie für ein Doktorandenstipendium zu großem Dank verpflichtet.

Experimenteller Teil

Die Schmpp. sind nicht korrigiert. – IR-Spektren: Perkin-Elmer-Gerät Infracord. – ¹H-NMR-Spektren: Varian A 60. – ¹⁹F-NMR-Spektren: Jeol C 60 HL. – Massenspektren: Gerät MS 9 von AEI, Elektronenenergie: 70 eV.

2,2,6,6-Tetrakis(trifluormethyl)-6H-1,3,5-oxathiazine 1: Auf die Lösung eines Thiocarbonsäureamids (20 g) in wasserfreiem Ether (250 ml) werden bei -20 bis 0°C unter intensivem Rühren zwei Äquivalente Hexafluoraceton geleitet. Danach wird das Reaktionsgemisch gleichzeitig mit der äquimolaren Menge Trifluoressigsäureanhydrid und der doppelten Menge Pyridin (oder der äquimolaren Menge Phosphoryltrichlorid und der vierfachen Menge Pyridin) versetzt und 48 bis 72 h bei -30°C belassen. Nach Abtrennung des ausgefallenen Salzes wird die Etherphase mit Eiswasser gewaschen, über Na₂SO₄ getrocknet und eingeengt. Die Reinigung des Produktes erfolgt durch Umkristallisation aus Methanol (Tab. 1).

1	-2,2,6,6,-tetrakis- (trifluormethyl)- 6H-1,3,5-oxathiazin	Schmp. % Ausb.	IR*) (cm ⁻¹)	Summenformel (MolMasse)		с ^А	nalys H	e N
a	4-Methyl-	32-33°C 42	1655 ^{*)}	C ₈ H ₃ F ₁₂ NOS (389.2)	Ber. Gef.	24.69 24.69	0.78 0.81	3.60 3.86
b	4-Phenyl-	43 °C 60	1629, 1597 1581 ^{ъ)}	C ₁₃ H ₅ F ₁₂ NOS (451.2)	Ber. Gef.	34.60 34.54	1.10 1. 2 2	3.10 2.87
c	4-(p-Tolyl)-	41 °C 72	1625, 1600 *)	C ₁₄ H ₇ F ₁₂ NOS (465.3)	Ber. Gef.	36.14 36.27	1.52 1.72	3.01 2.85
d	4-(4-Methoxy- phenyl)-	53 – 54°C 52	1622, 1595 1572 ^{ъ)}	C ₁₄ H ₇ F ₁₂ NO ₂ S (481.3)	Ber. Gef.	34.94 35.00	1.46 1.47	2.91 2.89
e	4-(4-Chlor- phenyl)-	71 °C 75	1628, 1592 ^{b)}	C ₁₃ H ₄ ClF ₁₂ NOS (485.7)	Ber. Gef.	32.15 32.23	0.83 1.00	2.88 2.85

Tab. 1. Ausbeuten, Schmelzpunkte, IR- und elementaranalytische Daten der Verbindungen 1

*) CCl₄^{a)} bzw. KBr^{b)}.

2,2-Bis(trifluormethyl)-2H-1,3-thiazete 3 und 4,4-Bis(trifluormethyl)-4H-1,3,5-thiadiazine 4: 50 mmol 1 werden 20-80 h bei 15-20 Torr auf 140 °C (Bad) erhitzt. Der Verlauf der Reaktion wird IR- oder ¹⁹F-NMR-spektroskopisch verfolgt, das anfallende Rohprodukt säulenchromatographisch (Kieselgel; Eluierung von eventuell noch vorhandenem 1 mit CCl₄, von 3 und 4 mit CHCl₃) vorgereinigt und schließlich fraktionierend destilliert oder sublimiert. Dabei gelingt die Abtrennung der Verbindung 3 von 4 praktisch quantitativ. Der Rückstand (4) wird durch Umkristallisation aus Methanol analysenrein erhalten (Tab. 2).

²⁰⁾ R. Ottlinger, Diplomarbeit, Techn. Univ. München 1976.

	-2,2-bis(trifluor- methyl)-2H-1,3- thiazet	Sdp./Torr Schmp. % Ausb.	IR *) (cm ⁻¹)	Summenformel (MolMasse)	Analyse C H N
3a	4-Phenyl-	88 °C/12 76	1602, 1560 a)	C ₁₀ H ₅ F ₆ NS (285.2)	Ber. 42.11 1.76 4.91 Gef. 41.88 1.85 5.39
3b	4-(<i>p</i> -Tolyl)-	112°C/12 78	1605, 1585 1560ª)	C ₁₁ H ₇ F ₆ NS (299.2)	Ber. 44.15 2.36 4.68 Gef. 43.88 2.37 4.38
3c	4-(4-Methoxy- phenyl)-	118°C 65	1605, 1580 1560 ^{ь)}	C ₁₁ H ₇ F ₆ NOS (315.2)	Ber. 41.91 2.24 4.41 Gef. 41.81 2.86 4.88
3d	4-(4-Chlor- phenyl)-	76°C 72	1602, 1582 1560 ⁵⁾	C ₁₀ H ₄ ClF ₆ NS (319.7)	Ber. 37.57 1.26 4.38 Gef. 37.57 1.40 4.35
	-4,4-bis(trifluor- methyl)-4H-1,3,5- thiadiazin				
4a	2,6-Diphenyl-	122°C 7	1652, 1577 ^{b)}	C ₁₇ H ₁₀ F ₆ N ₂ S (388.3)	Ber. 52.58 2.60 7.21 Gef. 52.71 2.69 6.96
4 b	2,6-Di(<i>p</i> - tolyl)-	162°C 8	1635, 1597 1561 ^{ъ)}	C ₁₉ H ₁₄ F ₆ N ₂ S (416.4)	Ber. 54.81 3.39 6.73 Gef. 55.10 3.39 6.67
4c	2,6-Bis(4- chlorphenyl)-	171°C 8	1642, 1585 1560 ^{%)}	C ₁₇ H ₈ Cl ₂ F ₆ N ₂ S (457.2)	Ber. 44.66 1.76 6.13 Gef. 44.86 1.99 6.11
_					

Tab. 2. Ausbeuten, Schmelz- bzw. Siedepunkte, IR- und elementaranalytische Daten der Verbindungen 3 und 4

) CCl₄) bzw. KBr^{b)}.

Tab. 3. ¹H- und ¹⁹F-NMR-Daten *) der Verbindungen 1, 3 und 4, δ [ppm] bzw. J [Hz]

	R	¹ H-NMR		¹⁹ F-NMR
1a	CH ₃ 2.53 (s)	3H*)		-0.15 (h, 2.5) (6F) ^{a)} -1.25 (h, 2.5) (6F)
1 b	C ₆ H ₅		7.30 – 7.73 (m) 3 H ^{b)} 7.88 – 8.15 (m) 2 H	-0.9 (h, 2.5) (6F) ^b -2.15 (h, 2.5) (6F)
1c	<i>p</i> -CH ₃ C ₆ H ₄ 2.42 (s)	3H	7.15 – 7.40 (m) 2 H ^{a)} 7.75 – 8.00 (m) 2 H	-0.95 (h, 2.5) (6F)*) -2.15 (h, 2.5) (6F)
1 d	<i>p</i> -CH ₃ OC ₆ H 3.86 (s)	4 3H	6.87 — 7.15 (m) 2 H ^{ъ)} 7.82 — 8.12 (m) 2 H	-0.8 (h, 2.5) (6F) ^{b)} -2.1 (h, 2.5) (6F)
1 e	p-ClC ₆ H ₄		7.43 – 7.67 (m) 2 H ^{b)} 7.84 – 8.07 (m) 2 H	- 0.95 (h, 2.5) (6F) ^{b)} - 2.2 (h, 2.5) (6F)
3a	C6H2		7.25 – 7.90 (m) 5 H ^{b)}	-4.9 (s) (6F) ^{b)}
3 b	<i>p</i> -CH ₃ C ₆ H ₄ 2.40 (s)	3H	7.13 – 7.38 (m) 2 H ^{b)} 7.47 – 7.68 (m) 2 H	-4.8 (s) (6F) ^{b)}
3c	<i>p</i> -CH ₃ OC ₆ H 3.82 (s)	4 3н	6.82—7.05 (m) 2Н ^{ы)} 7.50—7.71 (m) 2Н	-5.0 (s) (6F) ^{b)}
3 d	p-ClC ₆ H₄		7.40 – 7.80 (m) 4 H ^b	-5.1 (s) (6F) ^{b)}
4a	C ₆ H,		7.33 – 7.69 (m) 6 H ^{a)} 7.87 – 8.17 (m) 4 H	-2.25 (s) (6F) ^{a)}
4b	<i>р</i> -СН ₃ С ₆ Н ₄ 2.42 (s)	6H	7.15 – 7.42 (m) 4 H ^{a)} 7.78 – 8.03 (m) 4 H	-2.15 (s) (6F) ^{a)}
4c	p-ClC ₆ H ₄		7.35 7.60 (m) 4 H ^{a)} 7.85 8.07 (m) 4 H	-2.4 (s) (6F) ^{a)}

*) In CCl₄^{a)}, in CDCl₃^{b)}, TMS als innerer bzw. in CCl₄^{a)}, in CHCl₃^{b)}, Trifluoressigsäure als äußerer Standard.

Schwefelheterocyclen, I

5-Imino-4,4-bis(trifluormethyl)-2-thiazoline 7: Äquimolare Mengen 1 und eines Isonitrils werden in wasserfreiem Xylol 12 h unter Rückfluß erhitzt. Der nach Abdestillieren des Lösungsmittels i. Vak. verbleibende Rückstand wird aus Methanol umkristallisiert (Tab. 4).

	-4,4-bis(trifluor-	Schmp.	IR*)	Summenformel		A	nalvs	e
	methyl)-2-thiazolin	% Ausb.	(cm ⁻¹)	(MolMasse)		С	H	N
72	5-tert-Butylimino-	81 °C	1680—1635,	C ₁₅ H ₁₄ F ₆ N ₂ S	Ber.	48.91	3.83	7.60
	2-phenyl-	73	1598, 1572	(368.3)	Gef.	49.07	4.06	7.96
7 b	5- <i>tert</i> -Butylimino-	75°C	1675 – 1630,	C ₁₆ H ₁₆ F ₆ N ₂ S	Ber.	50.25	4.22	7.32
	2-(p-tolyl)-	79	1592, 1560	(382.3)	Gef.	50.33	4.46	7.18
7 c	5-Cyclohexylimino-	56°C	1685 — 1635,	C ₁₇ H ₁₆ F ₆ N ₂ S	Ber.	51.18	4.09	7.10
	2-phenyl-	75	1593, 1570	(394.4)	Gef.	51.03	4.40	7.19
7d	5-Cyclohexylimino-	58°C	1675 – 1640,	C ₁₈ H ₁₈ F ₆ N ₂ S	Ber.	52.93	4. 44	6.86
	2-(p-tolyl)-	78	1592, 1560	(408.4)	Gef.	53.03	4.47	6.89

Tab. 4. Ausbeuten, Schmelzpunkte, IR- und elementaranalytische Daten der Verbindungen 7

*) In KBr.

3,3-Bis(trifluormethyl)-3H-1,2,4-dithiazole 6: 20 mmol 1 (Methode A) bzw. 20 mmol 5^{12}) (Methode B) werden mit 60 mmol feingepulvertem Phosphorpentasulfid 48 h auf 140 °C (Bad) erhitzt. Das Filtrat wird durch Säulenchromatographie (Kieselgel, Elutionsmittel CCl₄) und anschließende Destillation gereinigt. Feststoffe werden aus Hexan umkristallisiert (Tab. 5).

Tab. 5. Ausbeuten, Schmelz- bzw. Siedepunkte, IR- und elementaranalytische Daten der Verbindungen 6

6	-3,3-bis(trifluor- methyl)-3H- 1,2,4-dithiazol	% A	Ausb. B	Sdp./Torr Schmp.	IR *) (cm ⁻¹)	Summenformel (MolMasse)		cA	nalys H	e N
a	5-Isopropyl-		70	101°C/90	1628ª)	C ₇ H ₇ F ₆ NS ₂ (283.3)	Ber. Gef.	29.68 29.26	2.49 2.43	4.94 4.66
b	5- <i>tert</i> -Butyl-		68	101 – 103 °C/ 90	1623*)	C ₈ H ₉ F ₆ NS ₂ (297.3)	Ber. Gef.	32.32 32.40	3.05 3.08	4.71 4.75
c	5-Benzyl-		48	89 – 91 °C/ 0.1	1625*)	$C_{11}H_7F_6NS_2$ (331.3)	Ber. Gef.	39.88 39.07	2.13 2.11	4.23 4.15
d	5-Phenyl-	78	55	67-68°C/ 0.1	1610ª)	$C_{10}H_{5}F_{6}NS_{2}$ (317.3)	Ber. Gef.	37.86 37.63	1.59 1.59	4.41 4.32
e	5-(<i>o</i> -Tolyl)-		45	79−81 °C/ 0.1	1615 ^{a)}	$C_{11}H_7F_6NS_2$ (331.3)	Ber. Gef.	39.88 39.74	2.13 2.14	4.23 4.36
f	5-(<i>p</i> -Tolyl)-	81	52	96-98°C/ 0.2	1608*)	$C_{11}H_7F_6NS_2$ (331.3)	Ber. Gef.	39.88 39.71	2.13 2.17	4.23 4.32
g	5-(4-Methoxy- phenyl)-	83	42	94-95°C/ 0.1 38°C	1600 ^{b)}	C ₁₁ H ₇ F ₆ NOS ₂ (347.3)	Ber. Gef.	38.04 38.07	2.03 2.13	4.03 3.87
h	5-(4-Chlor- phenyl)-	85	45	100°C/0.1 55 – 56°C	1 600 ^{b)}	C ₁₀ H ₄ ClF ₆ NS ₂ (351.7)	Ber. Gef.	34.15 34.44	1.14 1.28	3.98 3.96

*) Film^{a)} bzw. KBr^{b)}.

Umsetzungen von 1 mit Kohlenstoffmehrfachbindungssystemen (allgemeine Vorschrift): 5 mmol 1 werden mit der äquimolaren Menge eines Dienophils 5-10 h in wasserfreiem Xylol unter Rückfluß erhitzt. Nach Abdestillieren des Lösungsmittels wird durch Säulenchromatographie (Kieselgel, CCl₄) vorgereinigt und anschließend destilliert oder aus Methanol bzw. Hexan umkristallisiert (Tab. 6).

4,4-bis(trilluormethyl)-	<u>.</u>		· ·				
4a,5,6,7,8,8a-hexa- aydro-4 <i>H</i> -5,8-methano- 1,3-benzothiazin	Schmp. % Ausb.	(cm ⁻¹)	(MolMasse)		C	halysi H	N
2-Phenyl-	61-63°C (Hexan) 86	1595, 1570 ^{a)}	C ₁₇ H ₁₅ F ₆ NS (379.4)	Ber. Gef.	53.82 53.84	3.99 3.71	3.69 3.61
2-(4-Chlorphenyl)-	86–88°C (Hexan) 81	1600, 1565*)	C ₁₇ H ₁₄ ClF ₆ NS (413.8)	Ber. Gef.	49.34 49.43	3.41 3.44	3.38 3.23
4,4-bis(trifluormethyl)- 5-dihydro-4 <i>H</i> -1,3-thiazir	n						
6-Isobutoxy- 2-(p-tolyl)-	37°C 52	1596, 1565 ^{a)}	C ₁₇ H ₁₉ F ₆ NOS (399.4)	Ber. Gef.	51.12 50.81	4.79 4.68	3.51 3.23
6-Isobutoxy-2-(4- chlorphenyl)-	49°C 53	1605, 1590, 1565 ª)	C ₁₆ H ₁₆ ClF ₆ NOS (419.8)	Ber. Gef.	45.78 45.76	3.84 3.74	3.34 3.18
-8a-morpholino-4,4- bis(trifluormethyl)- 4a,5,6,7,8,8a-hexa- hydro-4 <i>H</i> -1,3-benzo- thiazin							
2-(p-Tolyl)-	107°C 64	1592, 1567 ª)	$C_{21}H_{24}F_6N_2OS$ (466.5)	Ber. Gef.	54.07 53.71	5.19 5.05	6.00 5.82
2-(4-Chlorphenyl)-	96–97°C 44	1 596, 1587, 1564*)	C ₂₀ H ₂₁ ClF ₆ N ₂ OS (486.9)	Ber. Gef.	49.34 49.48	4.35 4.38	5.75 5.51
-6-diethylamino-5- methyl-4,4-bis(trifluor- methyl)-4H-1,3-thiazin			·· ·· ··				
2-(p-Tolyl)-	105°C/0.1 55	1630, 1598 ^{b)}	$C_{18}H_{20}F_6N_2S$ (410.4)	Ber. Gef.	52.68 52.44	4.91 4.70	6.83 6.52
2-(4-Chlorphenyl)-	43–44°C 49	1630, 1601, 1585 ^{b)}	C ₁₇ H ₁₇ ClF ₆ N ₂ S (430.8)	Ber. Gef.	47.39 47.30	3.98 3.97	6.50 6.13
	4a,5,6,7,8,8a-hexa- ydro-4H-5,8-methano- 1,3-benzothiazin 2-Phenyl- 2-(4-Chlorphenyl)- 4,4-bis(trifluormethyl)- -dihydro-4H-1,3-thiazin 6-Isobutoxy- 2-(p-tolyl)- 6-Isobutoxy-2-(4- chlorphenyl)- -8a-morpholino-4,4- bis(trifluormethyl)- 4a,5,6,7,8,8a-hexa- hydro-4H-1,3-benzo- thiazin 2-(p-Tolyl)- 2-(4-Chlorphenyl)- -6-diethylamino-5- methyl-4,4-bis(trifluor- methyl)-4H-1,3-thiazin 2-(p-Tolyl)- 2-(4-Chlorphenyl)-	4a,5,6,7,8,8a-hexa- ydro-4H-5,8-methano- 1,3-benzothiazin Schmp. % Ausb. 2-Phenyl- $61-63^{\circ}C$ (Hexan) 86 2-(4-Chlorphenyl)- $86-88^{\circ}C$ (Hexan) 81 4,4-bis(trifluormethyl)- -dihydro-4H-1,3-thiazin $86-88^{\circ}C$ (Hexan) 81 6-Isobutoxy- 2-(p-tolyl)- $37^{\circ}C$ 52 6-Isobutoxy- 2-(p-tolyl)- $37^{\circ}C$ 53 -8a-morpholino-4,4- bis(trifluormethyl)- 4a,5,6,7,8,8a-hexa- hydro-4H-1,3-benzo- thiazin $107^{\circ}C$ 64 2-(p-Tolyl)- $107^{\circ}C$ 64 2-(q-Tolyl)- $107^{\circ}C$ 64 2-(4-Chlorphenyl)- $96-97^{\circ}C$ 44 -6-diethylamino-5- methyl-4,4-bis(trifluor- methyl)-4H-1,3-thiazin $2-(p-Tolyl)-$ 55 2-(p-Tolyl)- $105^{\circ}C/0.1$ 55 2-(4-Chlorphenyl)- $43-44^{\circ}C$ 49	4a,5,6,7,8,8a-hexa- ydro-4H-5,8-methano- 1,3-benzothiazin Schmp. % Ausb. IR*' (cm ⁻¹) 2-Phenyl- $61-63^{\circ}$ C (Hexan) 1595, (Hexan) 2-(4-Chlorphenyl)- $86-88^{\circ}$ C (Hexan) 1500° , (Hexan) 4.4-bis(trifluormethyl)- -dihydro-4H-1,3-thiazin 6-Isobutoxy- 2-(p-tolyl)- 37° C 2-(p-tolyl)- 52 $1596,$ 2-(p-tolyl)- 53 6-Isobutoxy- 2-(p-tolyl)- 37° C 53 $1596,$ 1565 ^a) -8a-morpholino-4,4- bis(trifluormethyl)- 4a,5,6,7,8,8a-hexa- hydro-4H-1,3-benzo- thiazin 107° C 1592, 64 1567° 2-(p-Tolyl)- 107° C thiazin $1592,$ 64 1567° 2-(p-Tolyl)- 107° C thiazin $1592,$ 64 2-(q-Tolyl)- 105° C/0.1 thiazin $1537,$ 1564 ^{**} 2-(p-Tolyl)- 105° C/0.1 thiazin $1630,$ 55 2-(p-Tolyl)- 105° C/0.1 thiazin $1630,$ 49	4a,5,6,7,8,8a-hexa- ydro-4H-5,8-methano- 1,3-benzothiazin Schmp. % Ausb. IR*' (cm ⁻¹) Summenformel (MolMasse) 2-Phenyl- $61-63 ^{\circ}C$ (Hexan) 1595, (1570 ⁴) $C_{17}H_{18}F_6NS$ (379.4) 2-(4-Chlorphenyl)- $86-88 ^{\circ}C$ (Hexan) 1565 ⁴) $C_{17}H_{14}ClF_6NS$ (413.8) 4.4-bis(trifluormethyl)- -dihydro-4H-1,3-thiazin $37 ^{\circ}C$ 1596, (2-(p-tolyl)- $C_{17}H_{19}F_6NOS$ (399.4) 6-Isobutoxy- 2-(p-tolyl)- $37 ^{\circ}C$ 1596, (399.4) $C_{17}H_{19}F_6NOS$ (399.4) 6-Isobutoxy- 2-(p-tolyl)- $37 ^{\circ}C$ 1596, (399.4) $C_{16}H_{16}ClF_6NOS$ (399.4) 6-Isobutoxy- 2-(p-Tolyl)- $37 ^{\circ}C$ 1590, (53) $C_{16}H_{16}ClF_6NOS$ (399.4) -Isobutoxy-2-(4- chlorphenyl)- 53 1590, (419.8) (419.8) -8a-morpholino-4,4- bis(trifluormethyl)- 44 1567^{*0} $C_{21}H_{24}F_6N_2OS$ (466.5) (466.5) 2-(p-Tolyl)- $107 ^{\circ}C$ 1592 , 64 $C_{20}H_{21}ClF_6N_2OS$ (466.5) (486.9) 2-(p-Tolyl)- $105 ^{\circ}C/0.1$ 1630 , 1564^{*0} $C_{18}H_{20}F_6N_2S$ (410.4) (410.4) 2-(p-Tolyl)- $105 ^{\circ}C/0.1$ 1630 , 1564^{*0} $C_{17}H_{17}ClF_6N_2S$ (410.4) (410.4)	$4_4,5,6,7,8,8a-hexa-ydro-4H-5,8-methano-1,3-benzothiazin Schmp. IR*' Summenformel (Mol-Masse) 2-Phenyl- 61-63^{\circ}C 1595, C_{17}H_{15}F_6NS Ber. 2-Phenyl- 61-63^{\circ}C 1595, C_{17}H_{15}F_6NS Ber. 2-(4-Chlorphenyl)- 86-88^{\circ}C 1600, C_{17}H_{14}ClF_6NS Ber. 4,4-bis(trifluormethyl)- 86-88^{\circ}C 1565^{\circ} (413.8) Gef. 4,4-bis(trifluormethyl)- 52 1565^{\circ} C_{17}H_{19}F_6NOS Ber. 2-(p-tolyl) 52 1565^{\circ} C_{16}H_{16}ClF_6NOS Ber. 2-(p-tolyl) 52 1590, C_{16}H_{16}ClF_6NOS Ber. 2-(p-tolyl) 53 1590, C_{16}H_{16}ClF_6NOS Ber. (419.8) Gef. (419.8) Gef. Gef. -sboutoxy-2-(4 49^{\circ}C 1605, C_{16}H_{16}ClF_6NOS Ber. (419.8) Gef. 1565^{\circ} (419.8) Gef. -fordivfluermethyl)- 45,6,7,8,8a-hexa 1567^{\circ} (4665.5) Gef. 2-(p-Tolyl)- $	$4a, 5, 6, 7, 8, 8a-hexa-ydro-4H-5, 8-methano-1, 3-benzothiazin Schmp. IR*'% Ausb. Summenformel(molMasse) Ai 2-Phenyl- 61-63 {}^\circ C 1595,(Hexan) C_{17}H_{13}F_6NS Ber. 53.82 2-(4-Chlorphenyl)- 86-88 {}^\circ C 1600,(Hexan) C_{17}H_{14}CIF_6NS Ber. 49.34 4,4-bis(trifluormethyl)-dihydro-4H-1, 3-thiazin 86-88 {}^\circ C 1600,(Hexan) C_{17}H_{19}F_6NOS Ber. 49.34 6-Isobutoxy- 37 {}^\circ C 1596,(1990,(413.8) C_{17}H_{19}F_6NOS Ber. 51.12 2-(p-tolyl)- 52 1565* C_{17}H_{19}F_6NOS Ber. 51.12 6-Isobutoxy- 37 {}^\circ C 1596,(1990,(419.8) C_{16}H_{16}CIF_6NOS Ber. 51.12 2-(p-tolyl)- 53 1590,(565*) C_{16}H_{16}CIF_6NOS Ber. 53.71 2-(p-Tolyl)- 107 {}^\circ C$ 1592, 64 $C_{20}H_{21}CIF_6N_2OS$ Ber. 54.07 2-(p-Tolyl)- 107 {}^\circ C 1592, 64 $C_{20}H_{21}CIF_6N_2OS$ Ber. 54.07 2-(p-Tolyl)- 107 {}^\circ C 1592, 64 $C_{20}H_{21}CIF_6N_2OS$ Ber.	4a,5,6,7,8,8a-hexa- ydro-4H-5,8-methano- 1,3-benzothiazin Schmp. Wausb. IR*' (cm ⁻¹) Summenformel (MolMasse) Analyse C Analyse H 2-Phenyl- $61 - 63^{\circ}C$ 1595, (Hexan) C_1, TH_1, F_6NS Ber. 53.82 3.99 2-Phenyl- $61 - 63^{\circ}C$ 1595, (Hexan) C_1, TH_1, F_6NS Ber. 53.82 3.99 2-(4-Chlorphenyl)- $86 - 88^{\circ}C$ 1600, (Hexan) $C_1, TH_1, 4ClF_6NS$ Ber. 49.34 3.44 4.4-bis(trifluormethyl)- -dihydro-4H-1,3-thiazin $7^{\circ}C$ 1596, (399,4) Gef. 50.81 4.68 6-Isobutoxy- $37^{\circ}C$ 1596, (199,4) $C_1, TH_{19}F_6NOS$ Ber. 51.12 4.79 2-(p-tolyl)- 52 1565*' (399,4) Gef. 50.81 4.68 6-Isobutoxy- $37^{\circ}C$ 1596, (199,6) $C_1, TH_{19}F_6NOS$ Ber. 51.12 4.79 2-(p-tolyl)- 53 1590, (156*') $C_{16}H_16ClF_6NOS$ Ber. 54.07 5.19 -8a-morpholino-4,4- bis(trifluormethyl)- 4a,5,6,7,8,8a-hexa- hydro-4H-1,3-benzo- thiazin $107^{\circ}C$ 1592, (24(P-Chlorphenyl)- G_{64} $1567^{\circ*}$ $C_{20}H_{21}ClF_6N_2S$ Ber. 54.07 5.19 2-(p-T

Tab. 6. Ausbeuten, Schmelzpunkte, IR-*) und elementaranalytische Daten der Verbindungen 8-11

4,4-Bis(trifluormethyl)-4H-1,3,5-thiadiazine 12:5 mmol 1 werden mit der äquimolaren Menge eines Nitrils 5 – 10 h auf 100 – 140 °C (Bad) erhitzt. Die Reinigung der Produkte erfolgt durch Umkristallisation aus Methanol, wenn nicht anders vermerkt (Tab. 7).

Tal	[ab. 7. Ausbeuten, Schmelzpunkte, IR- und elementaranalytische Daten der Verbindungen 12										
12	-4,4-bis(trifluor- methyl)-4H-1 3 5-	-bis(trifluor- by)-4H-135- Schmp.		Summenformel		Analyse		e			
	thiadiazin	% Ausb.	(cm ⁻¹)	(MolMasse)		С	н	N			
a	2-(4-Methoxy- phenyl)-6-(p- tolyl)-	134–135°C 51	1639, 1597, 1565 ^{a)}	C ₁₉ H ₁₄ F ₆ N ₂ OS (432.4)	Ber. Gef.	52.78 52.70	3.26 3.05	6.48 6.31			
b	2-(4-Chlorphenyl)- 6-(4-methoxy- phenyl)-	153 °C 53	1639, 1597, 1565*)	C ₁₈ H ₁₁ ClF ₆ N ₂ OS (452.8)	Ber. Gef.	47.75 47.73	2.45 2.29	6.19 6.09			
с	2-Amino-6-(p-	159°C	3500 - 3000	C12HaF6N3S	Ber.	42.23	2.66	12.31			

(341.3)

(361.7)

(398.3)

(418.7)

C15H12F6N2O2S

C14H9ClF6N2O2S

3500-3000, C11H6ClF6N3S

Tab. 7. Ausbeuter

1660, 1598^{b)}

1662, 1605,

1726, 1655,

1735, 1659,

1588^{b)}

1598 a)

1587[°]

(Hexan)

174°C

(Hexan)

84-85°C

(Hexan) 47 74°C

(Hexan)

53

77

82

*) In CCl₄^{a)}, CHCl₃^{b)} bzw. KBr^{c)}.

		R ¹	R ²	6 F
7a	C ₆ H ₅ 7.35 – 7.65 (m) 3 H ^a) 7.80 – 8.08 (m) 2 H		t-C ₄ H ₉ 1.35 (s) 9 H	$-6.8 (s)^{a}$
7 b	р-СН 2.40 (7.13 - 7.73 -	₃ C ₆ H ₄ s) 3H ^{a)} - 7.38 (m) 2H - 7.98 (m) 2H	t-C₄H₅ 1.35 (s) 9 Н	$-6.7 (s)^{a}$
7c	C ₆ H ₂ 7.20 - 7.80 -	- 7.65 (m) 3 H ^{a)} - 8.10 (m) 2 H	c-C ₆ H ₁₁ 0.96 – 2.05 (m) 10 H 2.70 – 3.20 (m) 1 H	$-6.7 (s)^{a}$
7 d	7d $p-CH_3C_6H_4$ 2.38 (s) 3 H ^a) 7.13 - 7.42 (m) 2 H 7.70 - 8.00 (m) 2 H		c-C ₆ H ₁₁ 0.98 – 2.07 (m) 10 H 2.65 – 3.20 (m) 1 H	- 6.7 (s) ^{a)}
	R			6 F
6a	i-C3H7	1.31 (d, 6.5) 6H ^{b)} 2.94 (h, 6.5) 1 H		- 3.9 (s) ^{a)}
6b	t-C₄H9	1.38 (s) 9 H ^{b)}		$-4.2 (s)^{a}$
6c	CH ₂ C ₆ H ₅ 3.92 (s) 2H ^b		7.26 (s) 5 H	$-4.6 (s)^{a}$
6d	C ₆ H ₅		7.23 – 7.61 (m) 3 H ^{b)} 7.73 – 8.00 (m) 2 H	$-4.9 (s)^{a}$

Tab. 8. ¹H- und ¹⁹F-NMR-Daten^{*)} der Verbindungen 6, 7, 8–12, δ [ppm] bzw. J [Hz]

Gef. 42.22 2.95 11.97

Ber. 36.53 1.67 11.62

Gef. 36.74 1.65 11.18

7.03

6.88

6.69

6.49

Ber. 45.23 3.04

Gef. 45.33 3.15

Ber. 40.16 2.17

Gef. 40.34 2.38

143

12

f

tolyl)-

d 2-Amino-6-(4-

chlorphenyl)-

e 2-Ethoxycarbonyl-

6-(p-tolyl)-

2-ethoxy-

carbonyl-

6-(4-Chlorphenyl)-

	R		6 F
6e	o-CH₃C₅H₄ 2.50 (s) 3 H	7.12 – 7.42 (m) 3 H ^{b)} 7.50 – 7.71 (m) 1 H	- 4.6 (s) ^{a)}
6f	p-CH ₃ C ₆ H ₄ 2.37 (s) 3 H	7.10 – 7.32 (m) 2 H ^{b)} 7.67 – 7.90 (m) 2 H	$-4.9 (s)^{a}$
6g	<i>р</i> -СН ₃ ОС ₆ Н ₄ 3.78 (s) 3 Н	6.73—6.97 (m) 2 H ^{ь)} 7.67—7.93 (m) 2 H	- 5.0 (s) ^{a)}
6h	p-ClC ₆ H₄	7.28 – 7.54 (m) 2 H ^{b)} 7.71 – 7.97 (m) 2 H	$-5.1 (s)^{a}$
	R	Eingesetztes Dienophil	6 F
8a	C ₆ H ₅ 7.22 – 7.58 (m) 3 H 7.80 – 8.13 (m) 2 H	Norbornen 0.75 – 1.88 (m) 6 H ^{*)} 2.13 – 2.48 (m) 2 H 2.55 – 2.80 (breit) 1 H 3.38 (d breit, 9.5) 1 H	- 6.9 (q, 11.0) ^{a)} - 9.7 (q, 11.0)
8b	p-ClC ₆ H₄ 7.19 − 7.52 (m) 2 H 7.72 − 8.03 (m) 2 H	Norbornen 0.80 – 1.88 (m) 6 H ^{a)} 2.18 – 2.50 (m) 2 H 2.54 – 2.80 (m) 1 H 3.43 (d breit, 9.5) 1 H	- 6.9 (q, 11.0) ^{a)} - 9.7 (q, 11.0)
9a	<i>p</i> -CH ₃ C ₆ H ₄ 2.37 (s) 3 H 7.05 − 7.35 (m) 2 H 7.73 − 8.03 (m) 2 H	Isobutylvinylether 0.93 (d, 6.0) 6 H ^{b)} 1.50 – 2.95 (m) 3 H 3.17 – 3.76 (m) 2 H 5.26 (dd, 10.2, 4.8) 1 H	- 3.35 (q, 10.5) ^{b)} - 6.6 (q, 10.5)
9b	p-ClC ₆ H₄ 7.27 − 7.56 (m) 2 H 7.80 − 8.07 (m) 2 H	Isobutylvinylether 0.95 (d, 5.5) 6 H ^{b)} 1.50 – 3.00 (m) 3 H 3.17 – 3.77 (m) 2 H 5.28 (dd, 10.2, 4.8) 1 H	- 3.45 (q, 10.5) ^{b)} - 6.7 (q, 10.5)
10 a	p-CH ₃ C ₆ H ₄ 2.37 (s) 3 H 7.11 – 7.42 (m) 2 H 7.93 – 8.22 (m) 2 H	1-Morpholino-1-cyclohexen 1.00 – 3.07 (m) 13 H ^{b)} 3.33 – 3.90 (m) 4 H	– 5.4 (q, 10.0) ^{b)} – 17.05 (q, 10.0)
10b	p-ClC ₆ H ₄ 7.37 – 7.64 (m) 2 H 8.02 – 8.30 (m) 2 H	1-Morpholino-1-cyclohexen 1.25 – 3.03 (m) 13 H ^{b)} 3.47 – 3.87 (m) 4 H	- 5.35 (q, 10.0) ^{b)} - 17.25 (q, 10.0)
11a	p-CH ₃ C ₆ H ₄ 2.37 (s) 3H 7.06 − 7.35 (m) 2H 7.80 − 8.07 (m) 2H	1-Diethylamino-1-propin 1.03 (t, 7.0) 6 H ^{b)} 2.23 (h, 1.4) 3 H 2.83 (q, 7.0) 4 H	– 7.95 (q, 1.4) ^{b)}
11b	p-ClC ₆ H ₄ 7.30 – 7.58 (m) 2 H 7.85 – 8.14 (m) 2 H	1-Diethylamino-1-propin 1.03 (t, 7.0) 6 H ^{b)} 2.22 (h, 1.4) 3 H 2.86 (q, 7.0) 4 H	- 8.05 (q, 1.4) ^{b)}
12a	p-CH ₃ C ₆ H ₄ 2.42 (s) 3 H 6.88 - 7.1	NCC ₆ H ₄ OCH ₃ -(p) 3.87 (s) 3 H ^b) 3 (m) 2 H	-2.3 (s) ^{a)}
	7.22 - 7.4 7.89 - 8.2	8 (m) 2H 5 (m) 4H	

	R	Eingesetztes Dienophil	6 F			
12b	<i>p</i> -ClC ₆ H ₄ 6.98 – 7.2 7.48 – 7.7 7.95 – 8.2	NCC ₆ H ₄ OCH ₃ -(p) 3.92 (s) 3 H ^b 22 (m) 2 H 11 (m) 2 H 77 (m) 4 H	$-2.2 (s)^{a}$			
12c	p-CH ₃ C ₆ H ₄ 2.45 (s) 3H 7.27 - 7.54 (m) 2H 7.82 - 8.10 (m) 2H	NCNH ₂ 5.90 - 6.23 (breit) $2 H^{a}$	$-1.2 (s)^{a}$			
12 d	<i>p</i> -ClC ₆ H ₄ 7.50 – 7.74 (m) 2 H 7.92 – 8.14 (m) 2 H	NCNH ₂ 5.65 – 6.05 (breit) 2 H ⁴⁾	-1.3 (s) ^{a)}			
12e	<i>p</i> -CH ₃ C ₆ H ₄ 2.44 (s) 3H 7.22 – 7.50 (m) 2H 7.83 – 8.13 (m) 2H	NCCO ₂ C ₂ H ₅ 1.45 (t, 7.3) 3H ¹⁵⁾ 4.51 (q, 7.3) 2H	-2.5 (s) ^{b)}			
12f	<i>p</i> -ClC ₆ H₄ 7.47 – 7.77 (m) 2H 7.95 – 8.22 (m) 2H	NCCO₂C₂H₅ 1.48 (t, 7.3) 3 H ^{b)} 4.55 (q, 7.3) 2 H	$-2.6 (s)^{b}$			

^{*)} In CDCl₃^{a)}, CCl₄^{b)}, TMS als innerer bzw. in CHCl₃^{a)}, CCl₄^{b)}, Trifluoressigsäure als äußerer Standard.

[396/76]

Tab.	8	(Fortsetzung)